Abstract
L,D-transpeptidases, widely distributed in bacteria and even in the difficult-to-treat ESKAPE pathogens, can confer antibacterial resistance against the traditional β-lactam antibiotics through bypass of the 4 → 3 transpeptide linkage. LdtMt2, a l,d-transpeptidase in Mycobacteria tuberculosis, is essential for bacterial virulence and is considered as a potential anti-tuberculosis target inhibited by carbapenems. Diverse interaction modes between carbapenems and LdtMt2 have been reported, there are only limited evidences to validate those interaction modes. Herein, we identified the stable binding states of two carbapenems, imipenem and ertapenem, via crystallographic and biochemical studies, discovered that they adopt similar binding conformations. We further demonstrate the absence of the 1-β-methyl group in imipenem and the presence of both Y308 and Y318 residues in LdtMt2 synergistically resulted in one order of magnitude higher affinity for imipenem than ertapenem. Our study provides a structural basis for the rational drug design and evolvement of novel carbapenems against bacterial L,D-transpeptidases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.