Abstract
As an introduction to the theory of bifurcations, in this chapter we want to consider individual vector fields, i.e., families of vector fields with a 0-dimensional parameter space. We will present two fundamentals tools: the desingularization and the asymptotic expansion of the return map along a limit periodic set. In the particular case of an individual vector field these techniques give the desired final result: the desingularization theorem says that any algebraically isolated singular point may be reduced to a finite number of elementary singularities by a finite sequence of blow-ups. If X is an analytic vector field on S 2, then the return map of any elementary graphic has an isolated fixed point. As a consequence, in this special case there is no accumulation of limit cycles in the phase space. In other words, the cyclicity of each limit periodic set is less than one and any analytic vector field on the sphere has only a finite number of limit cycles.KeywordsSingular PointBlow DownTopological TypePolynomial VectorRegular OrbitThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.