Abstract

ScopeThe long-chain metabolites of (LCM) vitamin E are proposed as the active regulatory metabolites of vitamin E providing, with their anti-inflammatory properties, an explanatory approach for the inconsistent effects of vitamin E on inflammatory-driven diseases. We examined the modulation of cytokine expression and release from macrophages, a fundamental process in many diseases, to gain insights into the anti-inflammatory mechanisms of the α-tocopherol-derived LCM α-13′-COOH. Methods and resultsSuppressed gene expression of C–C motif chemokine ligand 2 (Ccl2), tumor necrosis factor (Tnf), and interleukin (Il) 6 in response to lipopolysaccharides by 24 h pre-treatment with α-13′-COOH in RAW264.7 macrophages was revealed using quantitative reverse transcription PCR. Further, reduced secretion of IL1β and CCL2 was found in this setup using flow cytometry. In contrast, 1 h pre-treatment suppressed only CCL2. Consequent gene expression analysis within 24 h of α-13′-COOH treatment revealed the induction of mitogen-activated protein kinases (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) negative feedback regulators including the ‘master regulators’ dual-specificity phosphatase 1 (Dusp1/Mkp1) and tumor necrosis factor induced protein 3 (Tnfaip3/A20). Approaches with immunoblots and chemical antagonists suggest a feedback induction via activation of extracellular-signal regulated kinase (ERK), p38 MAPK and NFκB pathways. ConclusionsCCL2 is suppressed in murine macrophages by α-13′-COOH and the indirect suppression of MAPK and NFκB pathways is likely a relevant process contributing to anti-inflammatory actions of α-13′-COOH. These results improve the understanding of the effects of α-13′-COOH and provide a basis for new research strategies in the context of inflammatory diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call