Abstract

ObjectiveTo observe the ameliorative effect of kappa opioid receptor (KOR) agonist on rats with neuropathic pain (NP) and investigate the mechanism of action of the calcium ion (Ca2+)/calcium/calmodulin-dependent protein kinase II (CaMKII)/cyclic AMP response element-binding protein (CREB) pathway.MethodsA total of 40 Sprague Dawley rats were randomly divided into four groups: sham-operation group (Sham group), NP model group (NP group), NP + KOR agonist U50488H group (NU group) and NP + specific CaMKII antagonist (KN93) + U50488H group (NKU group). The thermal withdrawal latency (TWL) and mechanical withdrawal threshold (MWT) of each group of rats were determined. ELISA was applied to examine the changes in inflammatory factors and oxidative stress factors, and the apoptotic rate in dorsal root ganglia was observed using TUNEL staining. Ca2+ concentration, content of oxidative stress index ROS and the release of calcitonin gene-related peptide (CGRP) and N-methyl-D-aspartate receptor (NMDAR) in the dorsal root ganglia were measured by the immunofluorescence assay. Finally, Western blotting was performed to detect expression changes in the Ca2+/CaMKII/CREB pathway.ResultsThe KOR agonist U50488H could improve the values of TWL and MWT of NP the rats, inhibit inflammatory responses and relieve oxidative stress injury. Its mechanisms of action were associated with U50488H repression of Ca2+ influx, reduction of CGRP and NMDAR releases in the dorsal root ganglia and decreases in CaMKII and CREB phosphorylations in NP rats.ConclusionThe KOR agonist ameliorates NP through suppressing the activity of the Ca2+/CaMKII/CREB pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call