Abstract

S. agalactiae (group B streptococci, GBS) is a major microbial pathogen in human neonates and causes invasive infections in pregnant women and immunocompromised individuals. The S. agalactiae β-hemolysin is regarded as an important virulence factor for the development of invasive disease. To examine the role of β-hemolysin in the interaction with professional phagocytes, the THP-1 monocytic cell line and human granulocytes were infected with a serotype Ia S. agalactiae wild type strain and its isogenic nonhemolytic mutant. We could show that the nonhemolytic mutants were able to survive in significantly higher numbers than the hemolytic wild type strain, in THP-1 macrophage-like cells and in assays with human granulocytes. Intracellular bacterial multiplication, however, could not be observed. The hemolytic wild type strain stimulated a significantly higher release of Tumor Necrosis Factor-α than the nonhemolytic mutant in THP-1 cells, while similar levels of the chemokine Interleukin-8 were induced. In order to investigate bacterial mediators of IL-8 release in this setting, purified cell wall preparations from both strains were tested and found to exert a potent proinflammatory stimulus on THP-1 cells. In conclusion, our results indicate that the β-hemolysin has a strong influence on the intracellular survival of S. agalactiae and that a tightly controlled regulation of β-hemolysin expression is required for the successful establishment of S. agalactiae in different host niches.

Highlights

  • The Gram positive pathogen Streptococcus agalactiae or group B streptococcus (GBS) is the leading microbial agent of neonatal pneumonia, sepsis and meningitis presenting as early or late-onset disease in human newborns [1] [2]

  • To elucidate the role of the b-hemolysin in this context, we investigated the survival of a hemolytic wild type strain and an isogenic nonhemolytic S. agalactiae mutant in phagocytic cells

  • Intracellular bacterial counts and total survival of the S. agalactiae hemolytic wild type (BSU 98) and the nonhemolytic (BSU 453) mutant strain within THP-1 macrophages and human granulocytes were quantified by colony forming units (CFU) determination respectively

Read more

Summary

Introduction

The Gram positive pathogen Streptococcus agalactiae or group B streptococcus (GBS) is the leading microbial agent of neonatal pneumonia, sepsis and meningitis presenting as early or late-onset disease in human newborns [1] [2]. The S. agalactiae b-hemolysin is regarded as an important virulence factor for the development of invasive disease. Several studies have determined the role of the S. agalactiae surfaceassociated b-hemolysin as a membrane destabilizing toxin in lung epithelial cells [5], and brain endothelial cells [6] which contributes to disease pathogenesis. Controversial reports exist regarding the role of b-hemolysin for the survival of S. agalactiae in phagocytes. Which role the b-hemolysin plays for the observed effect remains to be determined

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call