Abstract

In the context of intuitionistic implicational logic, we achieve a perfect correspondence (technically an isomorphism) between sequent calculus and natural deduction, based on perfect correspondences between left-introduction and elimination, cut and substitution, and cut-elimination and normalisation. This requires an enlarged system of natural deduction that refines von Plato’s calculus. It is a calculus with modus ponens and primitive substitution; it is also a “coercion calculus”, in the sense of Cervesato and Pfenning. Both sequent calculus and natural deduction are presented as typing systems for appropriate extensions of the λ-calculus. The whole difference between the two calculi is reduced to the associativity of applicative terms (sequent calculus = right associative, natural deduction = left associative), and in fact the achieved isomorphism may be described as the mere inversion of that associativity. The novel natural deduction system is a “multiary” calculus, because “applicative terms” may exhibit a list of several arguments. But the combination of “multiarity” and left-associativity seems simply wrong, leading necessarily to non-local reduction rules (reason: normalisation, like cut-elimination, acts at the head of applicative terms, but natural deduction focuses at the tail of such terms). A solution is to extend natural deduction even further to a calculus that unifies sequent calculus and natural deduction, based on the unification of cut and substitution. In the unified calculus, a sequent term behaves like in the sequent calculus, whereas the reduction steps of a natural deduction term are interleaved with explicit steps for bringing heads to focus. A variant of the calculus has the symmetric role of improving sequent calculus in dealing with tail-active permutative conversions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call