Abstract

The determination of affinity by using functional assays is important in drug discovery because it provides a more relevant estimate of the strength of interaction of a ligand to its cognate receptor than radioligand binding. However, empirical evidence for so-called, "functional affinity" is limited. Herein, we determined whether the affinity of carvedilol, a β-adrenoceptor antagonist used to treat heart failure that also promotes extracellular signal-regulated kinases 1 and 2 (ERK1/2) phosphorylation, differed between these two pharmacological activities. Four structurally related β-adrenoceptor antagonists (alprenolol, carazolol, pindolol, propranolol) that also activated ERK1/2 were included as comparators to enhance our understanding of how these drugs work in the clinical setting. In HEK293 cells stably expressing the human β 2-adrenoceptor carvedilol and related aryloxypropanolamines were partial agonists of ERK1/2 phosphorylation with potencies ([A]50s) that were lower than their equilibrium dissociation constants (K Bs) as β 2-adrenoceptor antagonists. As the [A]50 of a partial agonist is a good approximation of its K B, then these data indicated that the affinities of carvedilol and related ligands for these two activities were distinct. Moreover, there was a significant negative rank order correlation between the [A]50 of each ligand to activate ERK1/2 and their intrinsic activities (i.e., as intrinsic activity for ERK1/2 phosphorylation increased, so did affinity). Genome editing revealed that the transducer that coupled the β 2-adrenoceptor to ERK1/2 phosphorylation in response to carvedilol and other β 2-adrenoceptor antagonists was Gαs. Collectively, these data support the concept of "functional affinity" and indicate that the ability of the β 2-adrenoceptor to recruit Gαs may influence the affinity of the activating ligand. SIGNIFICANCE STATEMENT: In HEK293 cells overexpressing the human β2-adrenoceptor carvedilol and four related aryloxypropanolamines behaved as β2-adrenoceptor antagonists and partial agonists of ERK1/2 phosphorylation with rank orders of affinity that were distinct. These data imply that carvedilol and other β-blockers can stabilize the β2-adrenoceptor in different affinity conformations that are revealed when functionally distinct responses are measured. This is the basis for the pharmacological concept of "functional affinity."

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call