Abstract

The (3+1)-dimensional κ-(A)dS noncommutative spacetime is explicitly constructed by quantizing its semiclassical counterpart, which is the κ-(A)dS Poisson homogeneous space. This turns out to be the only possible generalization of the well-known κ-Minkowski spacetime to the case of non-vanishing cosmological constant, under the condition that the time translation generator of the corresponding quantum (A)dS algebra is primitive. Moreover, the κ-(A)dS noncommutative spacetime is shown to have a quadratic subalgebra of local spatial coordinates whose first-order brackets in terms of the cosmological constant parameter define a quantum sphere, while the commutators between time and space coordinates preserve the same structure of the κ-Minkowski spacetime. When expressed in ambient coordinates, the quantum κ-(A)dS spacetime is shown to be defined as a noncommutative pseudosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.