Abstract

Stable conformations of β-isomaltose (α- d-glucopyranosyl-(1→6)-β- d-glucose) in gas-phase and aqueous solution are investigated in this study using quantum mechanical calculations. Conformational maps are calculated at HF/6-31G(d,p) level and lower energy structures are sampled in the most stable regions. Entropic and thermal corrections are considered and the Boltzmann population is obtained for conformers that are representative of the 18 most stable regions found on the potential energy surface. B3LYP/6-31+G(d,p) and B3LYP/6-311+G(2d,2p) calculations are used in conformational samplings. Solvation effects are considered through the polarizable continuum model approach. Hydroxymethyl group orientations are investigated for the most stable conformers. The influence of electronic correlation and solvation on the glycosidic linkage preference (TG, GT, and GG) and hydroxymethyl group orientation ( tg, gt, and gg) are discussed. Heteronuclear spin coupling constants ( 3 J C,H) along the glycosidic linkage are calculated and comparison with other theoretical results and experiments is used to validate the obtained structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.