Abstract

The pine wood nematode Bursaphelenchus xylophilus is a destructive species affecting pine trees worldwide; however, the underlying mechanism leading to pathogenesis remains unclear. In this study, a B. xylophilus gene encoding thaumatin-like protein-1 (Bx-tlp-1) was silenced by RNA interference to clarify the relationship between the Bx-tlp-1 gene and pathogenicity. The in vitro knockdown of Bx-tlp-1 with double-stranded RNA (dsRNA) decreased B. xylophilus reproduction and pathogenicity. Treatments with dsRNA targeting Bx-tlp-1 decreased expression by 90%, with the silencing effect maintained even in the F3 offspring. Pine trees inoculated with B. xylophilus treated with Bx-tlp-1 dsRNA decreased the symptom of wilting, and the disease severity index was 56.7 at 30 days after inoculation. Additionally, analyses of the cavitation of intact pine stem samples by X-ray microtomography revealed that the xylem cavitation area of pine trees inoculated with B. xylophilus treated with Bx-tlp-1 dsRNA was 0.46 mm2 at 30 days after inoculation. Results from this study indicated that the silencing of Bx-tlp-1 has effects on B. xylophilus fitness. The data presented here provide the foundation for future analyses of Bx-tlp-1 functions related to B. xylophilus pathogenicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.