Abstract

The effect of nonadiabatic transitions on branching ratios, kinetic and internal energy distribution of fragments, and reaction mechanisms observed in acetaldehyde photodissociation is investigated by nonadiabatic molecular dynamics (NAMD) simulations using time-dependent hybrid density functional theory and Tully surface hopping. Homolytic bond breaking is approximately captured by allowing spin symmetry to break. The NAMD simulations reveal that nonadiabatic transitions selectively enhance the kinetic energy of certain internal degrees of freedom within approximately 50 fs. Branching ratios from NAMD and conventional "hot" Born-Oppenheimer molecular dynamics (BOMD) are similar and qualitatively agree with experiment. However, as opposed to the BOMD simulations, NAMD captures the high-energy tail of the experimental kinetic energy distribution. The extra "kick" of the nuclei in the direction of the nonadiabatic coupling vector results from nonadiabatic transitions close to conical intersections. From a mechanistic perspective, the nonadiabatic effects favor asynchronous over synchronous fragmentation and tend to suppress roaming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.