Abstract

AbstractIs “useful diversity” a myth? Many experiments and the little available theory on diversity in classifier ensembles are either inconclusive, too heavily assumption-bound or openly non-supportive of the intuition that diverse classifiers fare better than non-divers ones. Although a rough general tendency was confirmed in our previous studies, no prominent link appeared between diversity of the ensemble and its accuracy. Diversity alone is a poor predictor of the ensemble accuracy. But there is no agreed definition of diversity to start with! Can we borrow a concept of diversity from biology? How can diversity, as far as we can define and measure it, be used to improve the ensemble? Here we argue that even without a clear-cut definition and theory behind it, studying diversity may prompt viable heuristic solutions. We look into some ways in which diversity can be used in analyzing, selecting or training the ensemble.KeywordsConvex HullRandom ForestClass LabelEnsemble MemberCombination MethodThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.