Abstract

Vascular remodeling is a key feature of many pathologic states, including atherosclerosis, or hypertension. Vascular smooth muscle cells participate in determining the vessel structure by several mechanisms such as cell migration, cell growth, or cell death (necrosis or apoptosis). Here we report that thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ -adenosine triphosphatase (ATPase), is able to induce apoptosis in human vascular smooth muscle cells (HVSMCs). Apoptosis was assessed by three different methods: differential chromatin binding dye staining. cytoplasmic histone-associated DNA fragments detection by enzyme-linked immunosorbent assay (ELISA) and terminal deoxyribonucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL). When HVSMCs were treated for 1 h with thapsigargin (100 nM-10 microM), there was a concentration-dependent increase in both parameters 24 h after the thapsigargin pulse. When a time-course experiment was performed, both parameters were significantly enhanced from 3 to 6 h after the exposure to thapsigargin. We conclude that thapsigargin promotes apoptosis in HVSMCs, providing a useful tool for the study of programmed cell death in human vascular smooth muscle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.