Abstract

Fluids driven off the subducting Pacific plate infiltrate the shallow Mariana forearc and lead to extensive serpentinization of mantle peridotite. However, the sources, pathways, and chemical modifications of ascending, slab-derived fluids remain poorly constrained and controversial. In this study, we use thallium (Tl) concentrations and isotopic ratios of serpentinized peridotite and rodingitized diabase from the South Chamorro and Conical Seamounts to discriminate between potential fluid sources with distinct Tl isotope compositions. Serpentinite samples from the Mariana forearc all display ε205Tl>−0.5 (where ε205Tl=10,000×(Tl205/Tlsample203−Tl205/TlSRM997203)/(Tl205/TlSRM997203)), which is significantly enriched in 205Tl compared to the normal mantle (ε205Tl=−2). Given that high temperature hydrothermal processes do not impart significant Tl isotope fractionation, the isotope compositions of the serpentinites must reflect that of the serpentinizing fluid. Pelagic sediments are the only known slab component that consistently displays ε205Tl>−0.5 and, therefore, we interpret the heavy Tl isotope signatures as signifying that the serpentinizing fluids were derived from subducting pelagic sediments. A rodingitized diabase from Conical Seamount was found to have an ε205Tl of 0.8, suggesting that sediment-sourced serpentinization fluids could also affect diabase and other mafic lithologies in the shallow Mariana forearc. Forearc rodingitization of diabase led to a strong depletion in Tl content and a virtually complete loss of K, Na and Rb. The chemical composition of hybrid fluids resulting from serpentinization of harzburgite with concomitant rodingitization of diabase can be highly alkaline, depleted in Si, yet enriched in Ca, Na, K, and Rb, which is consistent with the composition of fluids emanating from mud volcanoes in the Mariana forearc. Our study suggests that fluid–rock interactions between sedimentary, mafic, and ultramafic lithologies are strongly interconnected even in the shallowest parts of subduction zones. We conclude that transfer of fluids and dissolved elements at temperatures and pressures below 400 °C and 1 GPa, respectively, must be taken into account when elemental budgets and mass transfer between the subducting plate, the forearc, the deep mantle and the ocean are evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.