Abstract

The relationship of structural and functional brain damage and disorders of consciousness (DOC) for diffuse axonal injury (DAI) is still not fully explored. We employed diffusion tensor imaging (DTI) and resting-state fMRI (RS-fMRI) to examine the changes of resting activations and white matter (WM) integrity for DAI with DOC. WM damages were observed in the body and genu of the corpus callosum, right external capsule (EC) and superior corona radiate (SCR), left superior cerebellar peduncle (SCP) and posterior thalamic radiation (PTR). The RS-fMRI revealed augmented amplitude of low-frequency fluctuation (ALFF) in the anterior cingulate cortex, hippocampus, insula, amygdala and putamen, and reduced ALFF in the precuneus, thalamus, pre-central and post-central gyri. Correlation analysis identified positive associations between the Glasgow Coma Scale (GCS) and activation of the precuneus and between GCS and DTI measurements in the left PTR and SCP, but a negative correlation was found between GCS and activation of the thalamus. Cross modality association analyses indicated that activations of the amygdala and postcentral gyrus were correlated with DTI measurements of the right EC and left PTR respectively. These results implicate that the WM damages in thalamocortical sensorimotor circuit and aberrant brain activity responding to self-awareness and sensation are critical factors to DOC, which expand the current understanding of the neural mechanisms underlying DAI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.