Abstract

Hippocampal deficits and metabolic dysregulations such as dyslipidemia have been frequently reported in schizophrenia and are suggested to contribute to the pathophysiology of schizophrenia. Hippocampus is particularly susceptible to environmental challenges including metabolism and inflammation. However, evidence linking hippocampal alterations and metabolic dysregulations are quite sparse in drug-naïve schizophrenia. A total of 166 drug-naïve patients with first-episode schizophrenia (FES) and 78 healthy controls (HC) underwent measures for several serum metabolic markers, structural and resting-state functional magnetic resonance imaging (rs-fMRI), as well as diffusion tensor imaging (DTI). Seed-to-voxel functional connectivity (FC) and probabilistic tractography were performed to assess the functional and microstructural connectivity of the bilateral hippocampi. Clinical symptoms were evaluated with Positive and Negative Syndrome Scale (PANSS). Patients with FES showed significantly decreased total cholesterol (Chol) level. Patients showed elevated FC between the left hippocampus and bilateral thalami while showing decreased microstructural connectivity between the left hippocampus and bilateral thalami. Multiple regression analyses showed that FC from the left hippocampus to the right superior frontal gyrus (SFG), bilateral frontal pole (FP), and right thalamus were negatively associated with the Chol level, while no association was observed in the HC group. Our study validated alterations in both functional and microstructural thalamo-hippocampal connectivities, and abnormal cholesterol level in FES. Moreover, decreased cholesterol level is associated with elevated thalamo-hippocampal functional connectivity in patients with FES, suggesting that dyslipidemia may interact with the hippocampal dysfunction in FES.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.