Abstract

Introduction: The thalamus, a heterogeneous brain structure, is involved in the generation of sleep-related thalamo-cortical oscillations. Higher order nuclei might possess a distinct function compared with first-order nuclei in brain communication. Here it is investigated whether this distinction can also be found during the process of falling asleep and deepening of slow-wave sleep. Methods: A nonlinear version of Granger causality was used to describe changes in directed network activity between the somatosensory cortex and rostral reticular thalamic nucleus (rRTN) and caudal reticular thalamic nucleus (cRTN), the higher order posterior (PO)- and anterior-thalamic nuclei (ATN), and the first-order ventral posteromedial thalamic nucleus (VPM) as assessed in local field potential recordings acquired during passive wakefulness (PW), light slow-wave sleep (LSWS), and deep slow-wave sleep (DSWS) in freely behaving rats. Surrogate statistics was used to assess significance. Results: Decreases in cortico-thalamo-cortical couplings were found. In contrast, multiple increases in intrathalamic couplings were observed. In particular, the rRTN increased its inhibition on the ATN from PW to LSWS, and this was further strengthened from LSWS to DSWS. The cRTN increased its coupling to VPM and PO from PW to LSWS, but the coupling from cRTN to VPM weakened at the transition from LSWS to DSWS, while its coupling to PO strengthened. Furthermore, intra-RTN coupling from PW to LSWS was differently changed compared with the change from LSWS to DSWS. Discussion: It can be inferred that higher order (ATN and PO) and first-order nuclei (VPM) are differentially inhibited during DSWS, which might be relevant for a proper functioning of sleep-related processes. Impact statement The functionally heterogeneous thalamus is affected by the different sleep/wake states. Changes in directed functional coupling between the thalamus and cortex and between functional different thalamic nuclei during the process of falling asleep and deepening to slow-wave sleep were investigated. It was revealed that the rostral and caudal subparts of the reticular thalamic nucleus, constituting the major source of intrathalamic inhibition, decouple from each other and show different coupling profiles with other thalamic nuclei. Specifically, higher order nuclei were found to be more inhibited than first-order nuclei during deep slow-wave sleep. These differences might be relevant for a proper coordination of sleep-related processes such as housekeeping, forgetting of irrelevant information, and consolidation of episodic memory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call