Abstract

The effects of lesions rostral to the brain stem on breathing responses to hypoxia were determined in chronically catheterized fetal sheep (>0.8 term). These studies were designed to test the hypothesis that the diencephalon is involved in hypoxic inhibition of fetal breathing. As in normal fetuses, hypoxia inhibited breathing with transection rostral to the thalamus or transection resulting in virtual destruction of the thalamus but sparing most of the parafascicular nuclear complex. Neuronal lesions were produced in the fetal diencephalon by injecting ibotenic acid through cannulas implanted in the brain. Hypoxic inhibition of breathing was abolished when the lesions encompassed the parafascicular nuclear complex but was retained when the lesions spared the parafascicular nuclear region or when the vehicle alone was injected. A new locus has been identified immediately rostral to the midbrain, which is crucial to hypoxic inhibition of fetal breathing. This thalamic sector involves the parafascicular nuclear complex and may link central O2-sensing cells to motoneurons that inhibit breathing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.