Abstract

The thalamus has been implicated in many cognitive processes, including long-term memory. More specifically, the anterior (AT) and mediodorsal (MD) thalamic nuclei have been associated with long-term memory. Despite extensive mapping of the anatomical connections between these nuclei and other brain regions, little is known regarding their functional connectivity during long-term memory. The current study sought to determine which brain regions are functionally connected to AT and MD during spatial long-term memory and whether sex differences exist in the patterns of connectivity. During encoding, abstract shapes were presented to the left and right of fixation. During retrieval, shapes were presented at fixation, and participants made an “old-left” or “old-right” judgment. Activations functionally connected to AT and MD existed in regions with known anatomical connections to each nucleus as well as in a broader network of long-term memory regions. Sex differences were identified in a subset of these regions. A targeted region-of-interest analysis identified anti-correlated activity between MD and the hippocampus that was specific to females, which is consistent with findings in rodents. The current results suggest that AT and MD play key roles during spatial long-term memory and suggest that these functions may be sex specific.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.