Abstract

In the adult barrel cortex of the rat the calcium-binding proteins calbindin D28k (CALB) and parvalbumin (PARV) are found in separate populations of GABAergic nonpyramidal neurons. In layers II to IV of the barrel cortex most PARV-immunoreactive neurons are likely to derive from a subpopulation of CALB-immunoreactive neurons whose CALB immunoreactivity ceases when they begin to express PARV between the second and third postnatal weeks. The aim of this study was to investigate the influence of subcortical afferents on the neurochemical differentiation of cortical PARV- and CALB-immunoreactive nonpyramidal neurons during development of the barrel cortex. We produced unilateral excitotoxic lesions with a single injection of ibotenic acid (0.5 microl, 0.05 M) in different subcortical nuclei in 7- to 8-day-old rats. Lesions involving the ventroposterior thalamic nuclei resulted in delayed development of PARV and CALB immunoreactivity in the barrel cortex. One week after ibotenic acid injections a transient decrease in the number of PARV-immunoreactive neurons in layer IV was observed, together with increased numbers of CALB-immunoreactive neurons in all cortical layers. The number of nonpyramidal neurons displaying coexistence of PARV and CALB in the lesioned hemisphere also increased compared with the numbers in the control hemisphere or control littermates. In contrast, lesions affecting the globus pallidus, zona incerta and reticular thalamic nucleus transiently increased the number of PARV-immunoreactive neurons in layers II and III, but had no effect on the number of CALB-positive cells. From 3 weeks onwards no differences were found between control and lesioned hemispheres after injections into either the ventroposterior thalamic nuclei or the magnocellular basal forebrain. These results suggest that CALB and PARV expression in nonpyramidal cortical neurons can be reversibly modulated in opposite directions by different cortical afferents during postnatal development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.