Abstract

We describe the ictal [ 18F]FDG-PET study of a case of absence status showing bilateral thalamic hypermetabolism and frontal cortex hypometabolism. This is the first ictal assessment of absence status by [ 18F]FDG-PET reporting this particular cortical and subcortical involvement. Our findings support the theory of corticothalamic circuitry involvement in the pathophysiology of absence seizures and stress the similarities of the clinical and metabolic pattern observed during absences with the pattern of task-induced interruption of the default state of brain function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.