Abstract

Treatment with infliximab, a chimeric anti-tumor necrosis factor (TNF)-α antibody, is highly efficient in patients with inflammatory bowel disease (IBD). It neutralizes soluble TNF-α and induces the apoptosis of transmembrane TNF-α-positive macrophages and T cells in the gut. Recently, T helper (Th)17, as well as Th1, responses have been implicated in the pathogenesis of IBD. To clarify the effects of infliximab on Th1 and Th17 responses in vitro. Naive CD4(+) T cells isolated from the peripheral blood of healthy volunteers were stimulated under Th1- or Th17-inducing conditions in the presence of 10 μg/ml of infliximab or control immunoglobulin (Ig)G1. The concentrations of interferon (IFN)-γ, interleukin (IL)-17, and TNF-α in the culture supernatants were determined by enzyme-linked immunosorbent assay (ELISA). Th1 and Th17 cells were immunostained with infliximab or control IgG1 and transmembrane TNF-α-positive cells were analyzed by flow cytometry. Annexin V staining and terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) assays were conducted in order to analyze the percentage of apoptotic cells. Both Th1 and Th17 cells expressed soluble and transmembrane TNF-α abundantly. Although infliximab suppressed IFN-γ secretion by Th1 cells and IL-17 secretion by Th17 cells, the level of the former was more profound than the latter. Infliximab increased annexin V- and TUNEL-positive apoptotic cells under Th1-inducing conditions, but not under Th17-inducing conditions. Infliximab suppressed Th1 and Th17 differentiation in vitro; however, IFN-γ production by Th1 cells was more profoundly suppressed than IL-17 secretion by Th17 cells. Th1 responses were more susceptible to infliximab-mediated apoptosis than Th17 responses. Our results clarify a new mechanism of action of infliximab.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.