Abstract

Purpose: Investigate the feasibility of using spatio-temporal optimization, i.e., fractionation schedule optimization combined with IMRT to select the patient-specific fractionation schedule that best maximizes the tumor biologically equivalent dose (BED). Methods and materials: The optimal fractionation schedule for a patient depends on the tumor and organ at-risk (OAR) sensitivity to fraction size (i.e., α/β), the effective tumor doubling time, and the size and location of tumor target relative to one or more OAR. We used a novel spatio-temporal optimization method to identify the number of fractions N that maximizes the tumor BED using 3D BED distribution for sixteen lung phantom cases. The selection of the optimal fractionation schedule used equivalent 30-fraction OAR constraints for the heart (Dmean < 45 Gy), lungs (Dmean < 20 Gy), cord (Dmax < 45 Gy), esophagus (Dmax < 63 Gy), and unspecified tissues (D05 < 63 Gy). To asses plan quality, we considered the min, mean, max and D95 tumor BED and the equivalent uniform dose (EUD) for optimized plans to the corresponding BED values for a conventional IMRT plan (60 Gy in 30 fractions). A sensitivity analysis was performed to assess the effects on optimal fractionation schedule of the effective tumor doubling time (Td = 3–100 days) and lag-time for accelerated repopulation (Tk = 0 to 10 days) Results: For a tumor α/β = 10Gy, tumor max, min, mean, and D95 BED were about 20% larger than the BED for the conventional prescription. The EUD for the optimized fractionation schedule was up to 17% larger than conventional prescription. For fast proliferating tumor (Td < 10 days), there was no significant increase in tumor dose but the treatment course could be shortened, offering convenience for patients and efficient allocation of resources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call