Abstract

BackgroundCharacterized by the presence of inflammation, fibrosis, and bile duct proliferation, cholestatic liver disease (CLD) affects people of all age groups. Takeda G-protein-coupled receptor (TGR5) has been implicated in the suppression of inflammation via toll-like receptor 4 (TLR4) and nuclear factor kappa B (NF-κB). Kupffer cells and their M1 polarization play important roles in inflammation and cholestatic liver injury via production of pro-inflammatory cytokines. Nevertheless, the function of TGR5 signaling in CLD is largely unknown.MethodsWe conducted liver tissue experiments, animal experiments, serum marker testing, liver histology analysis, Kupffer cell experiments, RNA extraction and Real-time PCR, western blotting, evaluation of ROS production by flow cytometry and statistical differences were analyzed by student t-test using GraphPad Prism.ResultsWe found that serum bile acid (BA) and TGR5 levels were elevated in patients with cholestasis cirrhosis. Knockout of TGR5 in animals significantly increased bile duct ligation (BDL)-caused liver injury through increasing oxidative stress, promoting M1-predominant polarization of Kupffer cells, and elevating the serum levels of inflammatory cytokines. In contrast, TGR5 activation inhibited ROS production, secretion of pro-inflammatory cytokines, and M1-predominant polarization of Kupffer cells. Moreover, results showed that TGR5 exerted its effects via suppressing NF-κB signaling and activating nuclear factor 2 (Nrf2)/HO-1 signaling. Finally, the effect of TGR5 on cholestatic liver damage was also confirmed in vivo.ConclusionsTGR5 activation protected against BDL-induced CLD by both suppressing inflammation via inhibiting the NF-κB pathway and reducing ROS production via activation of Nrf2/HO-1 signaling. These findings show the importance of TGR5 in CLD and provide new insight into therapeutic strategies for CLD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.