Abstract

Inflammatory breast cancer (IBC) is the most aggressive and lethal breast cancer subtype but lacks unequivocal genomic differences or robust biomarkers that differentiate it from non-IBC. Here, Thermostable Group II intron Reverse Transcriptase RNA-sequencing (TGIRT-seq) revealed myriad differences in tumor samples, Peripheral Blood Mononuclear Cells (PBMCs), and plasma that distinguished IBC from non-IBC patients and healthy donors across all tested receptor-based subtypes. These included numerous differentially expressed protein-coding gene and non-coding RNAs in all three sample types, a granulocytic immune response in IBC PBMCs, and over-expression of repeat element and antisense RNAs, suggesting wide-spread enhanced transcription in both IBC tumors and PBMCs. By using TGIRT-seq to quantitate Intron-exon Depth Ratios (IDRs) and mapping reads to both genome and transcriptome reference sequences, we developed methods for parallel analysis of transcriptional and post-transcriptional gene regulation. This analysis identified numerous differentially and non-differentially expressed protein-coding genes in IBC tumors and PBMCs with high IDRs, reflecting rate-limiting RNA splicing that negatively impacts mRNA production. Mirroring gene expression differences in tumors and PBMCs, over-represented protein-coding gene RNAs in IBC patient plasma were largely intronic RNAs, while those in non-IBC patients and healthy donor plasma were largely mRNA fragments. Potential IBC biomarkers in plasma included T-cell receptor pre-mRNAs and intronic, LINE-1, and antisense RNAs. Our findings provide new insights into IBC and set the stage for monitoring disease progression and response to treatment by liquid biopsy. The methods developed for parallel transcriptional and post-transcriptional gene regulation analysis have potentially broad RNA-seq and clinical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.