Abstract

BackgroundShear wave elastography can evaluate tissue stiffness. Previous studies showed that the elasticity characteristics of breast lesions were related to the components of extracellular matrix which was regulated by transforming growth factor beta 1(TGF-β1) directly or indirectly. However, the correlation of the expression level of TGF-β1, its signal molecules and elasticity characteristics of breast lesions have rarely been reported. The purpose of this study was to investigate the correlation between the expression level of TGF-β1, its signal molecules, and the elasticity characteristics of breast lesions.Methods135 breast lesions in 130 patients were included. Elasticity parameters, including elasticity modulus, the elasticity ratio, the “stiff rim sign”, were recorded before biopsy and surgical excision. The expression levels of TGF-β1 and its signal molecules, including Smad2/3, Erk1/2, p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase 2 (JNK2), phosphoinositide 3-kinase (PI3K), and protein kinase B (PKB/AKT) were detected by immunohistochemistry. The diagnostic performance of the expression level of those molecules and their correlation with the elasticity characteristics were analyzed.ResultsElasticity parameters and the expression levels of TGF- β1 and its signal molecules of benign lesions were lower than those of malignant lesions (P<0.0001). The expression levels of TGF- β1 and its signal molecules were correlated with elasticity parameters. The expression levels of TGF- β1 and its signal molecules in lesions with “stiff rim sign” were higher than those without “stiff rim sign” (P<0.05). And the expression levels of Smad2/3, Erk1/2, p38 MAPK, JNK2, PI3K and AKT were correlated with that of TGF- β1. The area under the curve for receiver operator characteristic curve of TGF-β1 and its signal molecules in the differentiation of malignant and benign breast lesions ranged from 0.920–0.960.ConclusionsThe expression levels of TGF-β1, its signal molecules of breast lesions showed good diagnostic performance and were correlated with the elasticity parameters. The expression levels of signal molecules were correlated with that of TGF- β1, which speculated that TGF- β1 might play an important role in the regulation of breast lesion elasticity parameters and multiple signal molecule expressions.

Highlights

  • Breast cancer is one of the most common cancer with the second-highest cancer-associated deaths among women worldwide [1, 2]

  • The Emax, Emean, elasticity modulus (Esd) and elasticity ratio (Eratio) of benign breast lesions were significantly lower than those of malignant lesions (P < 0.001), but there was no significant difference in Emin between benign and malignant breast lesions (P = 0.202)

  • Our study found that the expression levels of TGF-β1 and its signal molecules in malignant breast lesions were significantly higher than those in benign breast lesions

Read more

Summary

Introduction

Breast cancer is one of the most common cancer with the second-highest cancer-associated deaths among women worldwide [1, 2]. The sensitivity of mammography is relatively low in women with dense breast tissue, resulting in missed or delayed diagnosis [5]. Shear wave elastography (SWE), a newly ultrasound-based technology, can measure tissue stiffness and provides a qualitatively and quantitatively interpretable color-coded map [6]. Previous studies showed that the elasticity characteristics of breast lesions were related to the components of extracellular matrix which was regulated by transforming growth factor beta 1(TGF-β1) directly or indirectly. The correlation of the expression level of TGF-β1, its signal molecules and elasticity characteristics of breast lesions have rarely been reported. The purpose of this study was to investigate the correlation between the expression level of TGF-β1, its signal molecules, and the elasticity characteristics of breast lesions

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.