Abstract

Transforming growth factor-b1 (TGF-beta1), a multi-function polypeptide, is a double-edged sword in cancer. For some tumor cells, TGF-beta1 is a potent growth inhibitor and apoptosis inducer. More commonly, TGF-beta1 loses its growth-inhibitory and apoptosis-inducing effects, but stimulates the metastatic capacity of tumor cells. It is currently little known about TGF-beta1-promoted cell migration in hepatocellular carcinoma (HCC) cells, let alone its mechanism. In this study, we found that TGF-beta1 lost its tumor-suppressive effects, but significantly stimulated cell migration in SMMC-7721 human HCC cells. By FACS and Western blot analysis, we observed that TGF-beta1 enhanced the expression of alpha5beta1 integrin obviously, and subsequently stimulated cell adhesion onto fibronectin (Fn). Furthermore, we observed that TGF-beta1 could also promote SMMC-7721 cells adhesion onto laminin (Ln). Our data also provided evidences that TGF-beta1 induced epithelial-to-mesenchymal transformation (EMT) in SMMC-7721 cells. First, SMMC-7721 cells clearly switched to the spindle shape morphology after TGF-beta1 treatment. Furthermore, TGF-beta1 induced the down-regulation of E-cadherin and the nuclear translocation of beta-catenin. These results indicated that TGF-beta1-promoted cell adhesion and TGF-beta1-induced epithelial-to-mesenchymal transformation might be both responsible for TGF-beta1-enhanced cell migration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call