Abstract
TGFbeta1-induced hepatocyte apoptosis involves the production of reactive oxygen species. An effective cellular defense mechanism against oxidative stress is the tripeptide glutathione (GSH), and the rate-limiting step in GSH biosynthesis is catalyzed by the heterodimeric holoenzyme glutamate cysteine ligase (GCL). Here, we demonstrate that TGFbeta1-induced apoptosis in the TAMH murine hepatocyte cell line is accompanied by both the cleavage and loss of the catalytic subunit of GCL (GCLC) and the down-regulation of GCLC gene expression resulting in a reduction in GCL activity and depletion of intracellular GSH. TGFbeta1-induced apoptosis is also accompanied by a reduction in Bcl-XL, an effect that may facilitate TGFbeta1-induced apoptosis as Bcl-XL overexpression inhibits TGFbeta1-induced caspase activation and cell death. Interestingly, Bcl-XL overexpression prevents TGFbeta1-induced cleavage of GCLC protein but not down-regulation of GCLC mRNA. Furthermore, TGFbeta1-induced down-regulation of GCLC mRNA is prevented by inhibition of histone deacetylase activity, suggesting that this is an active repression of GCLC gene transcription. These findings suggest that the suppression of GSH antioxidant defenses associated with the caspase-dependent cleavage of GCLC protein, caspase-independent suppression of GCLC gene expression, and depletion of intracellular GSH may play a role in enhancing TGFbeta1-induced oxidative stress and potentiating apoptotic cell death.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.