Abstract

The three mammalian isoforms of transforming growth factor-beta (TGF-beta1, -beta2, and -beta3) are potent regulators of cell growth, differentiation, and extracellular matrix deposition. To study their role in skin carcinogenesis, normal human keratinocytes, early (31) and late (310) passage immortalized keratinocytes (HaCaT cells), and five HaCaT-ras clones exhibiting benign (A-5, I-7), malignant (II-4, A-5 RT1), and highly aggressive (A-5 RT3) tumourigenic phenotypes were examined for the expression of TGF-beta isoforms, by immunohistochemistry. This was performed under in vivo conditions, in surface transplants and subcutaneously growing tumours in nude mice. Generally, all tissues that formed keratinized epithelia demonstrated an immunostaining pattern similar to normal human skin. TGF-beta1 was localized to the upper differentiated layers, the stratum granulosum and corneum, in a perimembranous pattern, whereas TGF-beta2 and, weaker, TGF-beta3 immunostaining was present in all suprabasal layers of normal keratinizing epithelia. In contrast, non-keratinizing transplants of non-tumourigenic or highly aggressive cells showed little to no immunoreactivity for TGF-beta1. Whereas TGF-beta2 expression was moderate in the upper layers of non-tumourigenic epithelia, large tumour cells of the malignant HaCaT-ras clones, particularly at the invasion front, were strongly positive for TGF-beta2. TGF-beta3 immunostaining was most pronounced in the stroma of malignant tumours, implying its paracrine induction by the malignant tumour transplants. These results suggest differential functions for each TGF-beta isoform in epidermal carcinogenesis, such that TGF-beta1 is associated with the more differentiated state, TGF-beta2 with highly malignant and invading cells, and TGF-beta3 with tumour stroma formation and angiogenesis. Furthermore, the expression of TGF-betas by both early- and late-stage tumours implies that the isoforms may have distinct functions at different stages of malignancy, supporting their dual role in skin carcinogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call