Abstract
Although TGF-β isoforms (TGF-β1-3) display very similar biochemical characteristics in vitro, it has been determined that they demonstrate different or even opposing effects in vivo. During embryogenesis, TGF-βs play important roles in several developmental processes. Tgfb3 is strongly expressed in the prefusion palatal epithelium, and mice lacking Tgfb3 display a cleft of the secondary palate. To test whether the effect of TGF-β3 in palatogenesis is isoform-specific in vivo, we generated a knockin mouse by replacing the coding region of exon1 in the Tgfb3 gene with the full-length Tgfb1 cDNA, which resulted in the expression of Tgfb1 in the Tgfb3 expressing domain. The homozygote knockin mice display a complete fusion at the mid-portion of the secondary palate, while the most anterior and posterior regions fail to fuse appropriately indicating that in vivo replacement of TGF-β3 with TGF-β1 can only partially correct the epithelial fusion defect of Tgfb3 knockout embryos. Palatal shelves of Tgfb1 knockin homozygote mice adhere, intercalate, and form characteristic epithelial triangles. However, decreased apoptosis in the midline epithelium, slower breakdown of the basement membrane and a general delay in epithelial fusion were observed when compared to control littermates. These results demonstrate an isoform-specific role for TGF-β3 in the palatal epithelium during palate formation, which cannot be fully substituted with TGF-β1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.