Abstract

High density lipoprotein (HDL) and its apolipoproteins can promote cholesterol efflux from macrophage foam cells via the ATP-binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor class B type I (SR-BI). Liver X receptors (LXRs) operate as cholesterol sensors which may protect from cholesterol overload by stimulating cholesterol efflux from cells to HDL through ABCA1, ABCG1 and SR-BI. The regulation of ABCA1, ABCG1 and SR-BI expression by cytokines present within the microenvironment of the atheroma may play an important role in determining the impact of reverse cholesterol transport on the atherosclerotic lesion. In the current study, we examined the effect of transforming growth factor-beta1 (TGF-beta1) on expressions of ABCA1, ABCG1 and SR-BI and explored the role of LXR alpha in the regulation of ABCA1, ABCG1 and SR-BI in THP-1 macrophage-derived foam cells. TGF-beta1 significantly increased expressions of ABCA1, ABCG1 and SR-BI at both transcriptional and translational levels in a dose-dependent and time-dependent manner. Cellular cholesterol content was decreased while cholesterol efflux was increased by TGF-beta1 treatment. Moreover, LXR alpha was up-regulated by TGF-beta1 treatment. In addition, LXR alpha small interfering RNA completely abolished the promotion effect induced by TGF-beta1. These results provide evidence that TGF-beta1 up-regulates expressions of ABCA1, ABCG1 and SR-BI through the LXR alpha pathway in THP-1 macrophage-derived foam cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.