Abstract

We investigated whether factors released from mouse embryonic stem (ES) cells primed with and without transforming growth factor (TGF)-β2 inhibit iodoacetic acid (IAA)- and H(2)O(2)-induced apoptosis in the cell culture system as well as after transplantation in the infarcted heart. We generated conditioned media (CMs) from ES cells primed with and without TGF-β2 and determined their effects on IAA- and H(2)O(2)-induced apoptosis in H9c2 cells. We also transplanted both ES-CMs in the infarcted heart to determine the effects on apoptosis and cardiac function after myocardial infarction (MI) at day (D)1 and D14. Terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) staining, apoptotic ELISA, and cell viability data demonstrated significantly (P < 0.05) reduced apoptosis with ES-CM compared with controls in both cell culture models. Moreover, TGF-β2-primed ES-CM (T-ES-CM) demonstrated enhanced beneficial effects, with further reduced (P < 0.05) apoptosis compared with ES-CM, suggesting the a presence of additional cytoprotective released factors after TGF-β2 treatment. Next, our in vivo apoptosis data suggested significant decrease in apoptosis with both ES-CMs compared with MI alone at D1 and D14. Notably, T-ES-CM demonstrated significant (P < 0.05) inhibition of apoptosis and fibrosis with improved cardiac function compared with ES-CM at D14, whereas no such effects were observed at D1. Next, we confirmed that apoptosis is mediated through a prosurvival Akt pathway. Moreover, we determined that after TGF-β2 treatment there was a two- to fivefold increase in cytoprotective released factors (interleukin-10, stem cell factor, tissue inhibitor of matrix metalloproteinase-1, and VEGF) with T-ES-CM compared with ES-CM. In conclusion, we suggest that factors released from ES cells with and without TGF-β2 treatment contain antiapoptotic factors that inhibit apoptosis in vitro and in vivo. We also suggest that T-ES-CM demonstrates additional beneficial effects that provide useful information for future therapeutic applications in regenerative medicine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.