Abstract
Transforming growth factor-β1, the key ligand of Smad-dependent signaling pathway, is critical for epithelial–mesenchymal transition during embryo-morphogenesis, fibrotic diseases, and tumor metastasis. In this study, we found that activation of p300/CBP, a histone acetyltransferase, by TGF-β1 mediates Epithelial–mesenchymal transition (EMT) via acetylating Smad2 and Smad3 in TGF-β1 signaling pathway. We demonstrated that treatment with EGCG inhibited p300/CBP activity in human lung cancer cells. Also, we observed that EGCG potently inhibited TGF-β1-induced EMT and reversed the up-regulation of various genes during EMT. Our findings suggest that EGCG inhibits the induction of p300/CBP activity by TGF-β1. Therefore, EGCG inhibits TGF-β1-mediated EMT by suppressing the acetylation of Smad2 and Smad3 in human lung cancer cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.