Abstract

Background: Gestational diabetes mellitus (GDM) is a pregnancy-related diabetic condition that may cause serious complications. However, its pathogenesis remains unclear. Placental damage due to GDM may lead to several health issues that cannot be ignored. Thus, we aimed to identify the mechanisms underlying GDM by screening differentially expressed genes (DEGs) related to vascular endothelial cells in the GDM databases and verify the expression of these DEGs in the placentas of women afflicted by GDM. Methods: We used GDM microarray datasets integrated from the Gene Expression Omnibus (GEO) database. Functional annotation and protein-protein interaction (PPI) analyses were used to screen DEGs. Placental tissues from 20 pregnant women with GDM and 20 healthy pregnant women were collected, and differential gene expression in the placental tissues was verified via qRT-PCR, western blotting, and immunofluorescence. Results: Bioinformatics analysis revealed three significant DEGs: SNAIL2, PAPP-A, and TGFβ1. These genes were all predicted to be underexpressed in patients with GDM. The results of qRT-PCR, western blot, and immunofluorescence analyses indicated that SNAIL2 and PAPP-A in the placenta tissue of patients with GDM were significantly underexpressed. However, TGFβ1 in the placenta tissues of GDM was significantly overexpressed. Conclusion: SNAIL2, TGFβ1, and PAPP-A may affect the placentas of pregnant women with GDM, warranting further investigation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.