Abstract

Breast cancer is the most common cancer in women worldwide. The tumor microenvironment contributes to tumor progression by inducing cell dissemination from the primary tumor and metastasis. TGFβ signaling is involved in breast cancer progression and is specifically elevated during metastatic transformation in aggressive breast cancer. In this study, we performed genomewide correlation analysis of TGFBR2 expression in a panel of 51 breast cancer cell lines and identified that MET is coregulated with TGFBR2. This correlation was confirmed at the protein level in breast cancer cell lines and human tumor tissues. Flow cytometric analysis of luminal and basal‐like breast cancer cell lines and examination of 801 tumor specimens from a prospective cohort of breast cancer patients using reverse phase protein arrays revealed that expression of TGFBR2 and MET is increased in basal‐like breast cancer cell lines, as well as in triple‐negative breast cancer tumor tissues, compared to other subtypes. Using real‐time cell analysis technology, we demonstrated that TGFβ1 triggered hepatocyte growth factor (HGF)‐induced and MET‐dependent migration in vitro. Bioinformatic analysis predicted that TGFβ1 induces expression of C‐ets‐1 as a candidate transcription factor regulating MET expression. Indeed, TGFβ1‐induced expression of ETS1 and breast cancer cell migration was blocked by knockdown of ETS1. Further, we identified that MET is a direct target of miR‐128‐3p and that this miRNA is negatively regulated by TGFβ1. Overexpression of miR‐128‐3p reduced MET expression and abrogated HGF‐induced cell migration of invasive breast cancer cells. In conclusion, we have identified that TGFβ1 regulates HGF‐induced and MET‐mediated cell migration, through positive regulation of C‐ets‐1 and negative regulation of miR‐128‐3p expression in basal‐like breast cancer cell lines and in triple‐negative breast cancer tissue.

Highlights

  • Breast cancer is the most common cancer in women worldwide with over 1.5 million new breast cancer cases diagnosed every year, which makes up to 30% of all cancers (Siegel et al, 2017)

  • TGFb receptor type-2 (TGFBR2) is higher expressed in basal-like breast cancer and correlates with hepatocyte growth factor receptor expression

  • To further elaborate on the function of TGFBR2 within subtypes of human breast cancer, we initially analyzed a gene expression dataset from 51 breast cancer cell lines (Riaz et al, 2013)

Read more

Summary

Introduction

Breast cancer is the most common cancer in women worldwide with over 1.5 million new breast cancer cases diagnosed every year, which makes up to 30% of all cancers (Siegel et al, 2017). It is a heterogeneous disease, and the appearance of drug resistance and formation of metastasis are leading causes of mortality (Di Cosimo and Baselga, 2010; Weigelt et al, 2005). Various cytokines and growth factors are secreted by cells of the tumor microenvironment and are involved in processes that potently promote tumor growth as well as metastasis formation (Breunig et al, 2014; Korkaya et al, 2011). The molecular mechanisms of TGFb signaling and elevated TGFBR2 expression are likely diverse and have not been fully elucidated

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call