Abstract

Nuclear matrix protein (NMP) composition of osteoblasts shows distinct two-dimensional gel electrophoretic profiles of labeled proteins as a function of stages of cellular differentiation. Because NMPs are involved in the control of gene expression, we examined modifications in the representation of NMPs induced by TGF-beta1 treatment of osteoblasts to gain insight into the effects of TGF-beta on development of the osteoblast phenotype. Exposure of proliferating fetal rat calvarial derived primary cells in culture to TGF-beta1 for 48 h (day 4-6) modifies osteoblast cell morphology and proliferation and blocks subsequent formation of mineralized nodules. Nuclear matrix protein profiles were very similar between control and TGF-beta-treated cultures until day 14, but subsequently differences in nuclear matrix proteins were apparent in TGF-beta-treated cultures. These findings support the concept that TGF-beta1 modifies the final stage of osteoblast mineralization and alters the composition of the osteoblast nuclear matrix as reflected by selective and TGF-beta-dependent modifications in the levels of specific nuclear matrix proteins. The specific changes induced by TGF-beta in nuclear matrix associated proteins may reflect specialized mechanisms by which TGF-beta signalling mediates the alterations in cell organization and nodule formation and/or the consequential block in extracellular mineralization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.