Abstract

The FET cell line, derived from an early stage colon carcinoma, is non-tumorigenic in athymic nude mice. Engineered FET cells that express TGF-α (FETα) display constitutively active EGFR/ErbB signaling. These cells readily formed xenograft tumors in athymic nude mice. Importantly, FETα cells retained their response to TGF-beta-mediated growth inhibition, and, like the parental FET cells, expression of a dominant negative TGF-beta type II receptor (DNRII) in FETα cells (FETα/DNRII) abrogated responsiveness to TGF-beta-induced growth inhibition and apoptosis under stress conditions in vitro and increased metastatic potential in an orthotopic model in vivo, which indicates metastasis suppressor activity of TGF-beta signaling in this model. Cancer angiogenesis is widely regarded as a key attribute for tumor formation and progression. Here we show that TGF-beta signaling inhibits expression of vascular endothelial growth factor A (VEGFA) and that loss of autocrine TGF-beta in FETα/DNRII cells resulted in increased expression of VEGFA. Regulation of VEGFA expression by TGF-beta is not at the transcriptional level but at the post-transcriptional level. Our results indicate that TGF-beta decreases VEGFA protein stability through ubiquitination and degradation in a PKA- and Smad3-dependent and Smad2-independent pathway. Immunohistochemical (IHC) analyses of orthotopic tumors showed significantly reduced TGF-beta signaling, increased CD31 and VEGFA staining in tumors of FETα/DNRII cells as compared to those of vector control cells. These results indicate that inhibition of TGF-beta signaling increases VEGFA expression and angiogenesis, which could potentially contribute to enhanced metastasis of those cells in vivo. IHC studies performed on human colon adenocarcinoma specimens showed that TGF-beta signaling is inversely correlated with VEGFA expression, indicating that TGF-beta-mediated suppression of VEGFA expression exists in colon cancer patients.

Highlights

  • Transforming growth factor beta (TGF-beta) comprises a group of multifunctional polypeptides that regulate different cellular processes, including cell proliferation, apoptosis, differentiation, migration, tumorigenecity and metastasis, through binding to TGF-beta receptors

  • To further confirm the suppressive effect of TGF-beta on vascular endothelial growth factor A (VEGFA) expression, a dominant negative TGF-beta RII (DNRII) was introduced into FET cells that express TGF-a (FETa) cells to abrogate endogenous TGF-beta signaling, which was shown by reduced Smad2 and Smad3 phosphorylation

  • Since TGFbeta acts as a metastasis suppressor in colon cancer cells [12], we examined whether suppression of VEGFA expression by TGFbeta contributes to metastasis suppression function of TGF-beta

Read more

Summary

Introduction

Transforming growth factor beta (TGF-beta) comprises a group of multifunctional polypeptides that regulate different cellular processes, including cell proliferation, apoptosis, differentiation, migration, tumorigenecity and metastasis, through binding to TGF-beta receptors. Many studies indicate that TGF-beta signaling acts as either a tumor promoter or a tumor suppressor. The tumor promoter function of TGF-beta has been associated with its ability to induce an epithelial to mesenchymal transition (EMT), which confers resistance to the apoptotic effects of TGFbeta [1,2,3]. We and others have demonstrated experimentally that TGF-beta mediates tumor suppressor activity in a variety of cancers including colon cancer, and that loss of TGFbeta signaling leads to acquisition and progression of malignancy [4,5,6,7,8,9,10,11]. Our recent studies demonstrate that TGF-beta signaling suppresses metastasis in a subset of colon cancer cells in an orthotopic model in vivo [12]. Identifying the mechanism(s) by which TGF-beta elicits its metastasis suppressor function is crucial for our understanding of tumor progression and for developing effective therapeutic strategies

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.