Abstract

Transforming growth factor-beta (TGF-beta) regulates a large variety of cellular activities. Binding of TGF- beta to its cell surface receptor triggers several signaling cascades, among which the TGF- beta -Smad pathway is the most extensively studied. TGF- beta also activates protein kinases, including MAPK, PKA and PKC, and modulates gene expression via its delicate interaction with other signaling pathways. During endochondral bone formation, TGF- beta acts as a potent inhibitor of the terminal differentiation of epiphyseal growth plate chondrocytes. This effect appears to be primarily mediated by Smad molecules, although MAPK-ATF2 signaling is also involved. The rate of chondrocyte maturation is tightly regulated through the interactions of Smad-mediated signaling, the Wnt signaling pathway, and the transcription factor Runx2. Improving our understanding of the exact mechanisms underlying TGF- beta -mediated signaling pathways and their effects may greatly impact the diagnosis and treatment of many common orthopaedic diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.