Abstract

Several members of the transforming growth factor (TGF)-beta superfamily are expressed in developing teeth from the initiation stage through adulthood. Of those, TGF-beta1 regulates odontoblast differentiation and dentin extracellular matrix synthesis. However, the molecular mechanism of TGF-beta3 in dental pulp cells is not clearly understood. In the present study, beads soaked with human recombinant TGF-beta3 induced ectopic mineralization in dental pulp from fetal mouse tooth germ samples, which increased in a dose-dependent manner. Further, TGF-beta3 promoted mRNA expression, and increased protein levels of osteocalcin (OCN) and type I collagen (COL I) in dental pulp cells. We also observed that the expression of dentin sialophosphoprotein and dentin matrix protein 1 was induced by TGF-beta3 in primary cultured dental pulp cells, however, not in calvaria osteoblasts, whereas OCN, osteopontin and osteonectin expression was increased after treatment with TGF-beta3 in both dental pulp cells and calvaria osteoblasts. Dentin sialoprotein was also partially detected in the vicinity of TGF-beta3 soaked beads in vivo. These results indicate for the first time that TGF-beta3 induces ectopic mineralization through upregulation of OCN and COL I expression in dental pulp cells, and may regulate the differentiation of dental pulp stem cells to odontoblasts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.