Abstract

The present study aimed to investigate whether the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway is involved in the transforming growth factor β2 (TGF-β2)-induced epithelial-mesenchymal transition (EMT) in human lens epithelial (HLE) cells. HLEB-3 cells were cultured and stimulated with 10 ng/ml TGF-β2 for 24 h. Western blotting was then performed to analyze the expression levels of connexin 43 and fibronectin, and the activities of Akt and mTOR. Confocal cell immunofluorescence was used to observe the expression of phosphorylated (p)-Akt. The toxicity of 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002) was assessed using a Cell Counting Kit-8 assay, and inhibition investigations were performed using a PI3K inhibitor. The expression of connexin 43 was suppressed and the expression of fibronectin was increased when the cells were stimulated with 10 ng/ml TGF-β2 for 24 h. In addition, Akt and mTOR were activated during TGF-β2-induced EMT. Treatment of with LY294002 (20 µM) inhibited the activation of Akt and mTOR and effectively prevented TGF-β2-induced EMT in the HLECs. Therefore, the results of the present study indicated that TGF-β2 induces EMT by activating the PI3K/Akt/mTOR signaling pathway in cultured HLECs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.