Abstract

Central nervous system (CNS) diseases can cause a series of neuronal lesions, which may be improved by the anti-apoptotic neuroprotection of transforming growth factor-beta 1 (TGF-β1). In neurons, L-type Ca2+ channels (LTCC) are mainly composed of Cav1.2 subunits. Given the implication of TGF-β1 in numerous CNS diseases, we examined the neuroprotective effects of TGF-β1 on the Cav1.2 channel in the CNS. To simulate acute mechanical traumatic brain injury (TBI), we used a needle to create parallel scratches across plates, which were cultured for 9h. Meanwhile, Fluo4-AM-loaded laser scanning confocal microscopy with a dual wavelength of 488nm/530nm was employed to determine intracellular calcium concentrations ([Ca2+]i). We found that MAPK inhibitors impede TGF-β1-induced cell viability and that TGF-β1 recovered from the trauma-induced cell viability in neurons. Cav1.2 production was significantly decreased in the TGF-β1-treated (10ng/mL) neurons. At this TGF-β1 concentration, Cav1.2 was significantly down-regulated in a time-dependent manner after 12h. Moreover, TGF-β1 partially recovered the protein levels of Cav1.2 that were reduced by TBI. TGF-β1 significantly inhibited the fluorescence intensity of [Ca2+]i increased by KCl and delayed the time of the peak [Ca2+]i. The observed effects of TGF-β1 on Cav1.2 were regulated by MAPK inhibitors. The observed effects of TGF-β1 on P-JNK were also impeded by pre-incubation with the LTCC inhibitor (10μM) nimodipine in trauma-injured neurons. Altogether, TGF-β1 regulated LTCCs through a mechanism dependent on MEK, JNK1/2 and p38 MAPK signal pathways in cortical neurons. Thus, we suggest the involvement of this mechanism in cell viability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.