Abstract

Tumor-associated neutrophils are found in many types of cancer and are often reported to contribute to negative outcomes. The presence of transforming growth factor-beta (TGF-β) in the tumor microenvironment reportedly contributes to the skewing of neutrophils to a more pro-tumor phenotype. The effects of TGF-β on neutrophil signaling and migration are, however, unclear. We sought to characterize TGF-β signaling in both primary human neutrophils and the neutrophil-like cell line HL-60 and determine whether it directly induces neutrophil migration. We found that TGF-β1 does not induce neutrophil chemotaxis in transwell or underagarose migration assays. TGF-β1 does activate canonical signaling through SMAD3 and noncanonical signaling through ERK1/2 in neutrophils in a time- and dose-dependent manner. Additionally, TGF-β1 present in the tumor-conditioned media (TCM) of invasive breast cancer cells results in SMAD3 activation. We discovered that TCM induces neutrophils to secrete leukotriene B4 (LTB4), which is a lipid mediator important for amplifying the range of neutrophil recruitment. However, TGF-β1 alone does not induce secretion of LTB4. RNA-sequencing revealed that TGF-β1 and TCM alter gene expression in HL-60 cells, including the mRNA levels of the pro-tumor oncostatin M (OSM) and vascular endothelial growth factor A (VEGFA). These new insights into the role and impact of TGF-β1 on neutrophil signaling, migration, and gene expression have significant implications in the understanding of the changes in neutrophils that occur in the tumor microenvironment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call