Abstract
Transforming growth factor-β1 (TGF-β1) regulates various biological processes, including differentiation, bone remodeling and angiogenesis, and is particularly important as a regulator of homeostasis and cell growth in normal tissue. Interestingly, some studies have reported that TGF-β1 induces apoptosis through induction of specific genes, whereas others suggest that TGF-β1 inhibits apoptosis and facilitates cell survival. Resolving these discrepancies, which may reflect differences in cellular context, is an important research priority. Here, using the parental mink lung epithelial cell line, Mv1Lu, and its derivatives, R1B and DR26, lacking TGF-β receptors, we investigated the involvement of TGF-β signaling in the effects of γ-irradiation. We found that canonical TGF-β signaling played an important role in protecting cells from γ-irradiation. Introduction of functional TGF-β receptors or constitutively active Smads into R1B and DR26 cell lines reduced DNA fragmentation, Caspase-3 cleavage and γ-H2AX foci formation in γ-irradiated cells. Notably, we also found that de novo protein synthesis was required for the radio-resistant effects of TGF-β1. Our data thus indicate that TGF-β1 protected against γ-irradiation, decreasing DNA damage and reducing apoptosis, and thereby enhanced cell survival.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.