Abstract
Transforming growth factor beta (TGF-beta) signaling leads to a number of biological end points involving cell growth, differentiation, and morphogenesis. Typically, the cellular effect accompanies an induction of mesodermal cell fate and inhibition of neural cell differentiation. However, during pathological conditions, these defined effects of TGF-beta can be reversed; for example, the growth-inhibitory effect is replaced with its tumor promoting ability. A multitude of factors and cross-signaling pathways have been reported to be involved in modulating the dual effects of TGF-beta. In this review, we focus on the potential role of TGF-beta signal transduction during development of neural progenitor cells and its relation to glioblastoma development from neural stem cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.