Abstract
Machine Common Sense Reasoning is the subfield of Artificial Intelligence that aims to enable machines to behave or make decisions similarly to humans in everyday and ordinary situations. To measure progress, benchmarks in the form of question-answering datasets have been developed and published in the community to evaluate machine commonsense models, including large language models. We describe the individual label data produced by six human annotators originally used in computing ground truth for the Theoretically-Grounded Commonsense Reasoning (TG-CSR) benchmark's composing datasets. According to a set of instructions, annotators were provided with spreadsheets containing the original TG-CSR prompts and asked to insert labels in specific spreadsheet cells during annotation sessions. TG-CSR data is organized in JSON files, individual raw label data in a spreadsheet file, and individual normalized label data in JSONL files. The release of individual labels can enable the analysis of the labeling process itself, including studies of noise and consistency across annotators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.