Abstract
ABSTRACTVarious gene network models with distinct physical nature have been widely used in biological studies. For temporal transcriptomic studies, the current dynamic models either ignore the temporal variation in the network structure or fail to scale up to a large number of genes due to severe computational bottlenecks and sample size limitation. Although the correlation-based gene networks are computationally affordable, they have limitations after being applied to gene expression time-course data. We proposed Temporal Gene Coexpression Network Analysis (TGCnA) framework for the transcriptomic time-course data. The mathematical nature of TGCnA is the joint modeling of multiple covariance matrices across time points using a ‘low-rank plus sparse’ framework, in which the network similarity across time points is explicitly modeled in the low-rank component. We demonstrated the advantage of TGCnA in covariance matrix estimation and gene module discovery using both simulation data and real transcriptomic data. The code is available at https://github.com/QiZhangStat/TGCnA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.