Abstract

Nanocomposites prepared with segmented polyurethane (SPU) and commercially available nanoclays (Cloisite™ Na +, Cloisite™ 15A, Cloisite™ 30B) were studied using thermogravimetric analysis coupled with Fourier Transform Infrared Spectroscopy (TGA/FTIR). The results showed that the thermal degradation of unfilled SPU and the 4, 6 and 10 wt% hand mixed nanocomposites occurred in two stages being the first due to degradation of hard segments and the second due to the degradation of soft segments. It was also found that the thermal stability of these nanocomposites was not improved by increasing nanoclay concentration except for SPU/Cloisite™ 15A nanocomposites were a 40 °C increase was observed. In a similar manner, FTIR spectra of the evolved gases obtained after the thermal degradation of these nanocomposites were qualitatively similar to the unfilled polymer except in those containing Cloisite™ 30B where isocyanate absorptions were detected. In contrast, SPU/Cloisite™ 30B nanocomposites prepared by in-situ polymerization, exhibited higher thermal stability than the corresponding hand mixed nanocomposites. In addition, these nanocomposites exhibited the presence of carbon dioxide in the evolved gases during its second degradation stage which was not observed in the hand mixed nanocomposites. In this case, it can be said that the presence of clays in the nanocomposites has a significant effect on the thermal degradation pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.