Abstract

Reclaimed asphalt binder (RAB) releases large amounts ·of hazardous sulfur-containing gases during combustion. This study attempts to introduce wood sawdust (WS) as an in-situ inhibitor of sulfur release during the combustion of refuse-derived fuel (RDF) blended with RAB-WS. The combustion characteristics, gaseous sulfur-containing products, interactions and combustion kinetics of RDF were investigated through thermogravimetry and mass spectrometry (TG-MS), and the mechanisms on migration and distribution of sulfur were revealed. Results indicated that WS additive inhibits the volatilization of light components and promotes the degradation of macromolecular components. WS addition improved the combustibility, burnout performance and combustion stability of RAB. The sulfur release of RAB-based RDF was mainly derived from resins and asphaltenes. WS addition generally decreased all gaseous sulfur-containing compounds (CH3SH, COS, SO2, CS2 and thiophene). Interactions between RAB and WS restrained all sulfur-containing gas emissions, and the normalized sulfur inhibition ratio reached 40.99 %. The Sarink and DAEM models could well describe the kinetic process of the co-combustion of RAB and WS. WS addition led to a decrease in activation energy, namely, it lowered the reaction barrier. Sulfur could be retained in-situ into incineration residue through the formation of sulfate minerals during the co-combustion of RAB and WS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.