Abstract

TG-DTG-DSC, FTIR, DRIFT, and Py-GC-MS studies have been conducted to determine the effect of the thermal decomposition conditions and structure of foundry binder BioCo3 in the form of a composition poly(sodium acrylate)/dextrin (PAANa/D) on the progress of degradation in terms of processes occurring in foundry sands in contact with liquid metal. TG-DTG-DSC curves of the composition allowed us to determine the temperature range in which they do not undergo degradation, by which they do not lose their binding properties. With temperature increasing, physical and chemical changes occur that are related to the evaporation of solvent water (20–110°C), followed by the release of constitution water, and finally intermolecular dehydration (110–230°C). In this temperature range, processes that are mainly reversible take place. Within a temperature range of 450–826°C, polymer chains are decomposed, including the decomposition of side chains. Within a temperature range of 399–663°C, polymer composition decomposition can be observed (FTIR, DRIFT), and gas products are generated from this destruction (Py-GC-MS).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call