Abstract

We observe that the Tg confinement effect of polymer films can saturate with polymer-substrate interaction. Thickness dependences of the glass transition temperature, Tg(h0), of random copolymer films of 4-tert-butylstyrene (TBS) and 4-acetoxystyrene (AS) supported by silica (SiOx) were measured for different TBS concentrations, XTBS. For 0 ≤ XTBS ≤ 0.47, Tg(h0) displays identical enhancements, independent of XTBS. For XTBS > ∼0.66; however, Tg(h0) decreases steadily with XTBS. The XTBS > 0.66 result is in keeping with expectations that TBS interacts less strongly with SiOx than AS does, and weaker polymer-substrate interaction renders greater dominance of the air surface over substrate surface on Tg, and thereby Tg reduction. We propose that saturation in Tg(h0) found for XTBS ≤ 0.47 is caused by the maximization in polymer-substrate-specific bond formation. Further experiments and a calculation support this proposition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.